Estimating Kinetic Rate Constants and Plug Concentration Profiles from Simulated KCE Electropherogram Signals
نویسنده
چکیده
Kinetic rate constants fundamentally characterize the dynamics of the chemical interaction of macromolecules, and thus their study sets a major direction in experimental biochemistry. The estimation of such constants is often challenging, partly due to the noisiness of data, and partly due to the theoretical framework. Novel and qualitatively reasonable methods are presented for the estimation of the rate constants of complex formation and dissociation in Kinetic Capillary Electrophoresis (KCE). This also serves the broader effort to resolve the inverse problem of KCE, where these estimates pose as initial starting points in the non-linear optimization space, along with the asymmetric Gaussian parameters describing the injected plug concentration profiles, which is also hereby estimated. This rate constant estimation method is also compared to an earlier one. MSC class: 92C45 (primary); 62H12, 92C40 (secondary).
منابع مشابه
Two-peak approximation in kinetic capillary electrophoresis.
Kinetic capillary electrophoresis (KCE) constitutes a toolset of homogeneous kinetic affinity methods for measuring rate constants of formation (k(+)) and dissociation (k(-)) of non-covalent biomolecular complexes, C, formed from two binding partners, A and B. A parameter-based approach of extracting k(+) and k(-) from KCE electropherograms relies on a small number of experimental parameters fo...
متن کاملA Computational Resolution of the Inverse Problem of Kinetic Capillary Electrophoresis (KCE)
Determining kinetic rate constants is a highly relevant problem in biochemistry, so various methods have been designed to extract them from experimental data. Such methods have two main components: the experimental apparatus and the subsequent analysis, the latter often dependent on mathematical theory. Thus the theoretical approach taken influences the effectiveness of constant determination. ...
متن کاملConformational Dynamics of DNA G-Quadruplex in Solution Studied by Kinetic Capillary Electrophoresis Coupled On-line with Mass Spectrometry**
G-quadruplex-forming DNA/RNA sequences play an important role in the regulation of biological functions and development of new anticancer and anti-aging drugs. In this work, we couple on-line kinetic capillary electrophoresis with mass spectrometry (KCE-MS) to study conformational dynamics of DNA G-quadruplexes in solution. We show that peaks shift and its widening in KCE can be used for measur...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملKinetic capillary electrophoresis (KCE): a conceptual platform for kinetic homogeneous affinity methods.
We propose kinetic capillary electrophoresis (KCE) as a conceptual platform for the development of kinetic homogeneous affinity methods. KCE is defined as the CE separation of species that interact during electrophoresis. Depending on how the interaction is arranged, different KCE methods can be designed. All KCE methods are described by the same mathematics: the same system of partial differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017